Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
Adv Mater ; : e2401220, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652510

RESUMO

The development of single-system materials that exhibit both multi-color room-temperature phosphorescence (RTP) and thermally activated delayed fluorescence (TADF) with tunable afterglow colors and channels is challenging. In this study, we developed four metal-free carbon dots (CDs) through structural tailoring and achieved panchromatic high-brightness RTP via strong chemical encapsulation in urea. The maximum lifetime and quantum yield reached 2141 ms and 56.55%, respectively. Moreover, CDs-IV@urea, prepared via core-shell interaction engineering, exhibited a dual afterglow of red RTP at 622 nm and green TADF. The degree of conjugation and functional groups of precursors affected the binding interactions of the nitrogen cladding on CDs, which in turn stabilized triplet energy levels and affected the energy gap between S1 and T1 (ΔEST) to induce multi-color RTP. The enhanced wrapping interaction lowered the ΔEST, promoting reverse intersystem crossing, which leads to phosphorescence and TADF. This strong core-shell interaction fully stabilized the triplet state, thus stabilizing the material in water, even in extreme environments such as strong acids and oxidants. These afterglow materials were tested in multi-color, time, and temperature multi-encryption as well as in multi-color in vivo bioimaging. Hence, these materials have promising practical applications in information security as well as biomedical diagnosis and treatment. This article is protected by copyright. All rights reserved.

2.
J Am Chem Soc ; 146(11): 7658-7667, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38452365

RESUMO

High-power phosphor-converted white light-emitting diodes (hp-WLEDs) have been widely involved in modern society as outdoor lighting sources. In these devices, due to the Joule effect, the high applied currents cause high operation temperatures (>500 K). Under these conditions, most phosphors lose their emission, an effect known as thermal quenching (TQ). Here, we introduce a zero-dimensional (0D) metal halide, Rb3InCl6:xSb3+, as a suitable anti-TQ phosphor offering robust anti-TQ behavior up to 500 K. We ascribe this behavior of the metal halide to two factors: (1) a compensation process via thermally activated energy transfer from structural defects to emissive centers and (2) an intrinsic structural rigidity of the isolated octahedra in the 0D structure. The anti-TQ phosphor-based WLEDs can stably work at a current of 2000 mA. The low synthesis cost and nontoxic composition reported here can herald a new generation of anti-TQ phosphors for hp-WLED.

3.
Mol Cell Biochem ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528297

RESUMO

Intermittent fasting remains a safe and effective strategy to ameliorate various age-related diseases, but its specific mechanisms are not fully understood. Considering that transcription factors (TFs) determine the response to environmental signals, here, we profiled the diurnal expression of 600 samples across four metabolic tissues sampled every 4 over 24 h from mice placed on five different feeding regimens to provide an atlas of TFs in biological space, time, and feeding regimen. Results showed that 1218 TFs exhibited tissue-specific and temporal expression profiles in ad libitum mice, of which 974 displayed significant oscillations at least in one tissue. Intermittent fasting triggered more than 90% (1161 in 1234) of TFs to oscillate somewhere in the body and repartitioned their tissue-specific expression. A single round of fasting generally promoted TF expression, especially in skeletal muscle and adipose tissues, while intermittent fasting mainly suppressed TF expression. Intermittent fasting down-regulated aging pathway and upregulated the pathway responsible for the inhibition of mammalian target of rapamycin (mTOR). Intermittent fasting shifts the diurnal transcriptome atlas of TFs, and mTOR inhibition may orchestrate intermittent fasting-induced health improvements. This atlas offers a reference and resource to understand how TFs and intermittent fasting may contribute to diurnal rhythm oscillation and bring about specific health benefits.

4.
Food Chem ; 445: 138765, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367562

RESUMO

This study aimed to reveal the effects and regulatory mechanism of dietary NDF on the performance of pigs by multi-omics analysis. Results showed that 16 % dietary NDF significantly improved meat quality, increased flavor amino acid content, and reduced backfat thickness and the feed-to-gain ratio. 16S rDNA sequencing showed that 16 % NDF significantly increased the abundance of Akkermansia, Lachnoclostridium, and Ruminococcus. Transcript analysis showed that genes related to muscle development and lipid metabolism were significantly modified. Metabonomic analysis showed that 16 % NDF significantly increased amino and fatty acid related metabolites. Correlation analysis suggested that 16 % NDF treatment may alter the gut microbiota and metabolites, regulate the expression of genes related to lipid and amino metabolism, and ultimately affect the flavor and performance of pigs. This study provides a novel understanding about the effect and regulatory mechanism of NDF supplements on the finishing pigs and a relevant reference for the improvement of diet formulation.


Assuntos
Aminoácidos , Detergentes , Suínos/genética , Animais , Aminoácidos/metabolismo , Multiômica , Composição Corporal , Suplementos Nutricionais , Dieta/veterinária , Carne/análise , Ração Animal/análise
5.
Nano Lett ; 24(9): 2904-2911, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38385631

RESUMO

Carbon dots (CDs) are promising luminescent emission layer materials for next generation electroluminescent light emitting diodes (EL-LEDs) due to their many advantages, such as environmental friendliness, low cost, and high stability. However, limited by the spin-forbidden properties of the triplet transition, it is difficult to improve the external quantum efficiency (EQE) of fluorescent CDs-based EL-LEDs. Meanwhile, traditional thermally activated delayed fluorescent (TADF) CDs prepared using coating strategies are difficult to utilize in EL-LEDs due to the nonconductivity of the coating agent. Herein, we successfully developed matrix-free TADF CDs with yellow emission and achieved a device EQE of 5.68%, which is the highest value reported in CDs-based EL-LEDs. In addition, we also developed white EL-LEDs with an EQE of 1.70%. This study highlights the importance of interactions between precursors in modulating the electroluminescence properties of TADF emitters and provides an effective design principle for matrix-free TADF CDs.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38401090

RESUMO

Objective: To investigate the impact of comprehensive health education on insulin therapy outcomes in diabetic patients. Methods: A total of 130 diabetes mellitus patients admitted to our hospital between January 2020 and January 2023 were enrolled. We used a randomization method to divide participants into two groups, one of which received the "admission-discharge-home follow-up" comprehensive health education program and the other which did not. They were randomly divided into an observation group and a control group (65 patients in each). The control group received conventional education, while the observation group received additional one-stop health education involving "admission-discharge-family follow-up." Various parameters, including 2-hour postprandial blood glucose (2hPG), fasting plasma glucose (FPG), glycated hemoglobin (HbA1c), insulin injection compliance, insulin standard injection mastery, and quality of life (assessed using the Insulin Therapy Related Quality of Life Questionnaire, ITR-QOL-CV), were compared between the two groups. Results: The study's key findings highlight the significant effects of a comprehensive health education program on key outcomes such as improving insulin injection compliance, improving glycemic control, and improving quality of life in patients with diabetes. Before the intervention, 2hPG, FPG, and HbA1c levels were similar in both groups (P > .05). Following the intervention, these indicators decreased in both groups, with significantly lower levels observed in the observation group (P < .05). Insulin injection compliance was comparable between the groups before the intervention (P > .05), but it increased in both groups post-intervention, with higher compliance observed in the observation group (P < .05). Similarly, scores from the insulin standard injection mastery questionnaire and ITR-QOL-CV were enhanced in both groups after the intervention, with higher scores in the observation group compared to the control group (P < .05). Conclusion: The implementation of one-stop health education involving "admission-discharge-family follow-up" led to improved insulin injection effectiveness, blood glucose control, compliance, insulin standard injection mastery, and overall quality of life in diabetic patients. These significant improvements have important clinical implications for patients with diabetes, as more efficient and consistent use of insulin injections will help to better control blood sugar levels, reducing patients' symptoms and risk of complications. For health care providers, these findings underscore the importance of providing comprehensive health education programs to improve outcomes and overall care for patients with diabetes.

7.
Haematologica ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38385270

RESUMO

t(1;19)(q23;p13) is one of the most common translocation genes in childhood acute lymphoblastic leukemia (ALL) and is also present in acute myeloid leukemia (AML) and mixed-phenotype acute leukemia (MPAL). This translocation results in the formation of the oncogenic E2A-PBX1 fusion protein, which contains a trans-activating domain from E2A and a DNA-binding homologous domain from PBX1. Despite its clear oncogenic potential, the pathogenesis of E2A-PBX1 fusion protein is not fully understood (especially in leukemias other than ALL), and effective targeted clinical therapies have not been developed. To address this, we established a stable and heritable zebrafish line expressing human E2A-PBX1 (hE2APBX1) for high-throughput drug screening. Blood phenotype analysis showed that hE2APBX1 expression induced myeloid hyperplasia by increasing myeloid differentiation propensity of hematopoietic stem cells (HSPCs) and myeloid proliferation in larvae, and progressed to AML in adults. Mechanistic studies revealed that hE2A-PBX1 activated the TNF/IL-17/MAPK signaling pathway in blood cells and induced myeloid hyperplasia by upregulating the expression of the runx1. Interestingly, through high-throughput drug screening, three small molecules targeting the TNF/IL-17/MAPK signaling pathway were identified, including OUL35, KJ-Pyr-9, and CID44216842, which not only alleviated the hE2A-PBX1- induced myeloid hyperplasia in zebrafish but also inhibited the growth and oncogenicity of human pre-B ALL cells with E2A-PBX1. Overall, this study provides a novel hE2A-PBX1 transgenic zebrafish leukemia model and identifies potential targeted therapeutic drugs, which may offer new insights into the treatment of E2A-PBX1 leukemia.

8.
Chemistry ; 30(15): e202303422, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38240191

RESUMO

The electrocatalytic CO2 reduction (ECR) to produce valuable fuel is a promising process for addressing atmospheric CO2 emissions and energy shortages. In this study, Cl-anion doped cadmium sulfide structures were directly fabricated on a nickel foam surface (Cl/CdS-NF) using an in situ hydrothermal method. The Cl-anion doping could significantly improve ECR activity for CO production in ionic liquid and acetonitrile mixed solution, compared to pristine CdS. The highest Faradaic efficiency of CO is 98.1 % on a Cl/CdS-NF-2 cathode with an excellent current density of 137.0 mA cm-2 at -2.25 V versus ferrocene/ferrocenium (Fc/Fc+ , all potentials are versus Fc/Fc+ in this study). In particular, CO Faradaic efficiencies remained above 80 % in a wide potential range of -2.05 V to -2.45 V and a maximum partial current density (192.6 mA cm-2 ) was achieved at -2.35 V. The Cl/CdS-NF-2, with appropriate Cl anions, displayed abundant active sites and a suitable electronic structure, resulting in outstanding ECR activity. Density functional theory calculations further demonstrated that Cl/CdS is beneficial for increasing the adsorption capacities of *COOH and *H, which can enhance the activity of the ECR toward CO and suppress the hydrogen evolution reaction.

9.
J Med Chem ; 67(3): 1861-1871, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38247270

RESUMO

Fluorescence and photoacoustic (PA) imaging in the second near-infrared (NIR-II, 1000-1700 nm) window has garnered massive interest owing to high maximum permissible exposure of light, reduced autofluorescence, and improved deep penetration. However, active targeted NIR-II photoacoustic/NIR-IIa fluorescence imaging of glioma under NIR-II excitation has been seldom reported, which is partly ascribable to the lack of suitable materials. In this study, a small-molecule-based αvß3-targeted NIR-II photoacoustic/NIR-IIa fluorescent probe IR-32p was generated and subsequently evaluated in U87MG tumor-bearing mice excited with NIR-I and NIR-II light. Exceptional dual-modal imaging properties such as good tumor uptake, high targeting specificity, and high tumor contrast were achieved in an orthotopic glioma model under 1020/1064 nm excitation, exhibiting a superior imaging depth of glioma through the skull. Our study introduces an outstanding dual-modal contrast agent with NIR-II absorption and confirms the superiority of NIR-II excitation over NIR-I in in vivo NIR-II/PA imaging.


Assuntos
Glioma , Técnicas Fotoacústicas , Camundongos , Animais , Corantes Fluorescentes , Técnicas Fotoacústicas/métodos , Glioma/diagnóstico por imagem , Imagem Óptica , Análise Espectral
10.
Angew Chem Int Ed Engl ; 63(9): e202314383, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38216536

RESUMO

Directional organic transformation via a green, sustainable catalytic reaction has attracted a lot of attention. Herein, we report a photoelectrochemical approach for highly selective epoxidation of alkenes in a salt solution using Co2 (OH)3 Cl (CoOCl) as a bridge of photo-generated charge, where the lattice Cl- of CoOCl can be oxidized to generate HClO by the photo-generated holes of BiVO4 photoanode and be spontaneously recovered by Cl- of a salt solution, which then oxidizes the alkenes into the corresponding epoxides. As a result, a series of water-soluble alkenes, including 4-vinylbenzenesulfonic acid sodium, 2-methyl-2-propene-1-sulfonic acid sodium, and 3-methyl-3-buten-1-ol can be epoxidized with near 100 % conversion rate and selectivity. Through further inserting a MoOx protection layer between BiVO4 and CoOCl, the stability of CoOCl-MoOx /BiVO4 can be maintained for at least 120 hours. This work opens an avenue for solar-driven organic epoxidation with a possibility of on-site reaction around the abundant ocean.

11.
Small ; : e2309633, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38282381

RESUMO

Low-cost bifunctional electrocatalysts capable of efficiently driving the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are needed for the growth of a green hydrogen economy. Herein, a Ru/Co3 O4 heterojunction catalyst rich in oxygen vacancies (VO ) and supported on carbon cloth (RCO-VO @CC) is prepared via a solid phase reaction (SPR) strategy. A RuO2 /Co9 S8 @CC precursor (ROC@CC) is first prepared by loading Co9 S8 nanosheets onto CC, following the addition of RuO2 nanoparticles (NPs). After the SPR process in an Ar atmosphere, Ru/Co3 O4 heterojunctions with abundant VO are formed on the CC. The compositionally optimized RCO-VO @CC electrocatalyst with a Ru content of 0.55 wt.% exhibits very low overpotential values of 11 and 253 mV at 10 mA cm-2 for HER and OER, respectively, in 1 m KOH. Further, a low cell voltage of only 1.49 V is required to achieve a current density of 10 mA cm-2 . Density functional theoretical calculations verify that the outstanding bifunctional electrocatalytic performance originates from synergistic charge transfer between Ru metal and VO -rich Co3 O4 . This work reports a novel approach toward a high-efficiency HER/OER electrocatalyst for energy storage and conversion.

12.
Chem Soc Rev ; 52(22): 8005-8058, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37880991

RESUMO

Afterglow materials are attracting widespread attention owing to their distinctive and long-lived optical emission properties which create exciting opportunities in various fields. Recent research has led to the discovery of many new afterglow materials featuring high photoluminescence quantum yields (PLQY) and lifetimes of up to several hours under ambient conditions. Afterglow materials are typically categorized according to their luminescence mechanism, such as long-persistent luminescence (LPL), room temperature phosphorescence (RTP), or thermally activated delayed fluorescence (TADF). Through rational design and novel synthetic strategies to modulate spin-orbit coupling (SOC) and populate triplet exciton states (T1), luminophores with long lifetimes and bright afterglow characteristics can be realized. Initial research towards afterglow materials focused mainly on pure inorganic materials, many of which possessed inherent disadvantages such as metal toxicity or low energy emissions. In recent years, organic-inorganic hybrid afterglow materials (OIHAMs) have been developed with high PLQY and long lifetimes. These hybrid materials exploit the tunable structure and easy processing of organic molecules, as well as enhanced SOC and intersystem crossing (ISC) processes involving heavy atom dopants, to achieve excellent afterglow performance. In this review, we begin by briefly discussing the structure and composition of inorganic and organic-inorganic hybrid afterglow materials, including strategies for regulating their lifetime, PLQY and luminescence wavelength. The specific advantages of organic-inorganic hybrid afterglow materials, including low manufacturing costs, diverse molecular/electronic structures, tunable structures and optical properties, and compatibility with a variety of substrates, are emphasized. Subsequently, we discuss in detail the fundamental mechanisms used by afterglow materials, their classification, design principles, and end applications (including sensing, anticounterfeiting, and photoelectric devices, among others). Finally, existing challenges and promising future directions are discussed, laying a platform for the design of afterglow materials for specific applications.

13.
Anal Chem ; 95(42): 15745-15754, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37842978

RESUMO

Exosomal surface glycan reveals the biological function and molecular information on the protein, especially in indicating the pathogenesis of certain diseases through monitoring of specific protein glycosylation accurately. However, in situ and nondestructive measurement techniques for certain Exosomal glycoproteins are still lacking. In this work, combined with on-chip purification, we designed a proximity ligation assay-induced rolling circle amplification (RCA) strategy for highly sensitive identification of Exosomal protein-specific glycosylation based on a couple of proximity probes to target Exosomal protein and the protein-specific glycosylation site. Benefiting from efficient separation, scalable dual-recognition, and proximity-triggered RCA amplification, the proposed strategy could convert different protein-specific glycan levels to prominent changes in absorbance signals, resulting in accurate quantification of specific glycosylated Exosomal protein. When detecting the glycosylated PD-L1 on MDA-MB-231 exosomes and glycosylated PTK7 on HepG2 exosomes, the detection limits were calculated to be as low as 1.04 × 104 and 2.759 × 103 particles/mL, respectively. In addition, we further expand the dual-recognition site to investigate the potential correlation of Exosomal glycosylation with polarization of THP-1 cells toward the tumor-suppressive M1 phenotype. Overall, this strategy provides a universal tool for multiple analyses of diverse protein-specific glycosylated exosomes, exhibiting enormous potential to explore exosome function and search for new early diagnosis markers.


Assuntos
Exossomos , Proteínas , Glicosilação , Proteínas/análise , Polissacarídeos/metabolismo , Exossomos/química
14.
Nano Lett ; 23(19): 9050-9055, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37756015

RESUMO

We report the colloidal synthesis of Bi-doped Cs2AgxNa1-xInCl6 double perovskite nanoplatelets (NPLs) exhibiting a near-unity photoluminescence quantum yield (PLQY), a record emission efficiency for nanoscale lead-free metal halides. A combination of optical spectroscopies revealed that nonradiative decay processes in the NPL were suppressed, indicating a well-passivated surface. By comparison, nanocubes with the same composition and surface ligands as the NPLs had a PLQY of only 40%. According to our calculations, the type of trap states arising from the presence of surface defects depends on their specific location: defects located on the facets of nanocubes generate only shallow traps, while those at the edges result in deep traps. In NPLs, due to their extended basal facets, most of the surface defects are facet defects. This so-called facet-defect tolerant behavior of double perovskites explains the more efficient optical emission of NPLs compared to that of nanocubes.

15.
Polymers (Basel) ; 15(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37688240

RESUMO

Staphylococcus aureus (SA) is one of the most common causes of hospital-acquired infections and foodborne illnesses and is commonly found in nature in air, dust, and water. The spread and transmission of SA aerosols in the air has the potential to cause epidemic transmission among humans and between humans and animals. To effectively provide the timely warning of SA aerosols in the atmosphere, the identification and detection of SA aerosol concentrations are required. Due to their homogeneous physicochemical properties, highly monodisperse submicron polystyrene (PS) microspheres can be used as one of the simulants of SA aerosols. In this study, 800 nm monodisperse fluorescent PS (f-PS) microspheres with fluorescence spectra and particle size distribution similar to those of SA were prepared. The 800 nm monodisperse f-PS microspheres had a fluorescence characteristic peak at 465 nm; in aerosols, 800 nm monodisperse f-PS microspheres with a similar particle size distribution to that of SA were further verified, mainly in the range of 500 nm-1000 nm; finally, it was found that the f-PS microspheres still possessed similar fluorescence characteristics after 180 days. The f-PS microspheres prepared in this study are very close to SA in terms of particle size and fluorescence properties, providing a new idea for aerosol analogs of SA.

16.
Chemistry ; 29(65): e202302383, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37681290

RESUMO

Carbon dots (CDs) smaller than 10 nm constitute a new type of fluorescent carbon-based nanomaterial. They have attracted much attention owing to their unique structures and excellent photoelectric properties. Primitive CDs usually comprise carbon and oxygen and are synthesized in one step from various natural products or synthetic organic compounds, usually via microwave or hydrothermal methods. However, the uniformity of surface functional groups often make CDs lack the diversity of active sites required for specific applications. Therefore, the functionalization of CDs by specific groups is a powerful strategy for improving their photophysical and photochemical properties. This paper reviews surface modification strategies to overcome these shortcomings. Functionalizing CDs using covalent or non-covalent modification can give them unique properties and broaden their applicability.

18.
J Colloid Interface Sci ; 651: 284-295, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37542903

RESUMO

Most traditional powder photocatalysts are not easily recovered. Herein, we report a flexible and recoverable photocatalyst with superior photocatalytic activity, in which MoS2/TiO2 heterojunctions are grown on amorphous carbon-coated carbon textiles (CT@C-MoS2/TiO2). Recoverable CT@C-MoS2/TiO2 textile was used to degrade 10 mg L-1 rhodamine B, leading to a degradation rate of up to 98.8 % within 30 min. Such a degradation rate is much higher than that of most of the reported studies. A density functional theory (DFT) calculation results illustrate charge transfer mechanism inside TiO2-C, MoS2-C, and MoS2/TiO2 heterojunctions, which shows that CT@C-MoS2/TiO2 textile with three electron separation channels has a high photogenerated carrier separation rate, which remarkably enhances the photocatalytic activity. Our work provides a novel strategy to design an efficient and recoverable photocatalyst with high activity.

19.
Nano Lett ; 23(18): 8794-8800, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37487142

RESUMO

Carbon dots (CDs) are promising nanomaterials for next-generation lighting and displays due to their tunable bandgap, high photoluminescence quantum yield (PLQY), and high stability. However, the exciton utilization efficiency (EUE) of CD-based films can only reach 25%, fundamentally limiting their application in electroluminescent light-emitting diodes (LEDs). Improving the EUE is therefore of great significance. Herein, we developed composite films containing CDs and poly(9-vinylcarbazole) (PVK). The films were then used to construct a series of high-performance electroluminescent LEDs with tunable emission colors covering the blue to green regions as the concentration of CDs in the films increased, delivering a maximum external quantum efficiency and current efficiency of 2.62% and 5.11 cd/A, respectively. Theoretical calculations and experiments established that the excellent performance at low film PLQY was due to a hot exciton effect in the CDs, achieving nearly 100% EUE. This work provides new design strategies toward high-performance CD-based electroluminescent LEDs.

20.
J Colloid Interface Sci ; 650(Pt A): 330-338, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37413867

RESUMO

All inorganic CsPbX3 perovskite has aroused broad interests in building efficient light-emitting devices with wide color gamut and flexible fabrication process. So far, the realization of high-performance blue perovskite light-emitting devices (PeLEDs) is still a critical challenge. Herein, we propose an interfacial induction strategy to generate low-dimensional CsPbBr3 with sky blue emission by employing γ-aminobutyric acid (GABA) modified poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The interaction between GABA and Pb2+ inhibited the formation of bulk CsPbBr3 phase. Further assisted by the polymer networks, the sky-blue CsPbBr3 film exhibited much improved stability under both photoluminescence and electrical excitation. This can be ascribed to the scaffold effect and the passivation function of the polymer. Consequently, the obtained sky-blue PeLEDs exhibited an average external quantum efficiency (EQE) of 5.67% (maximum of 7.21%) with a maximum brightness of 3308 cd/m2 and a working lifespan reaching 0.41 h. The strategy in this work provides a new opportunity for exploitation the full potential of blue PeLEDs towards application in lighting and display devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...